催化裂化 催化裂解 区别? 催化裂化 催化裂化是原油二次加工中最重要的加工过程,是液化石油气、汽油、煤油和柴油的主要生产手段,在炼油厂中占有举足轻重的地位。催化裂化一般以减压馏分油和焦化蜡油为原料,但是随着原油的日趋变重的增长趋势和市场对轻质油品的大量需求,部分炼厂开始掺炼减压渣油,甚至直接以常压渣油作为裂化原料。下面将从七个方面对催化裂化展开介绍。 (1) 催化裂化的一般特点 ① 轻质油(包括汽油、煤油和柴油)收率高,可达70~80wt%,而原油初馏的轻质油收率仅为10~40wt%。 ② 催化裂化汽油的辛烷值较高,研究法辛烷值可达85以上,汽油的安定性也较好。 ③ 催化裂化柴油的十六烷值低,常与直馏柴油调合使用,或者加氢精制提高十六烷值。 ④ 催化裂化气体产品约占10~20wt%,其中90%是液化石油气,并且含有大量的C3、C4烯烃,是优良的石油化工和生产高辛烷值汽油组分的原料。 (2) 重油催化裂化的特点 ① 焦炭产率高。重油催化裂化的焦炭产率高达8~12wt%,而馏分油催化裂化的焦炭产率通常为5~6wt%。 ② 重金属污染催化剂。与馏分油相比,重油含有较多的重金属,在催化裂化过程中这些重金属会沉积在催化剂表面,导致催化剂受污染或中毒。 ③ 硫、氮杂质的影响。重油中的硫、氮等杂原子的含量相对较高,导致裂化后的轻质油品中的硫、氮含量较高,影响产品的质量;另一方面,也会导致焦炭中的硫、氮含量较高,在催化剂烧焦过程中会产生较多的硫、氮氧化物,腐蚀设备,污染环境。 ④ 催化裂化条件下,重油不能完全气化。重油在催化裂化条件下只能部分气化,未气化的小液滴会附着在催化剂表面上,此时的传质阻力不能忽略,反应过程是一个复杂的气-液-固三相催化反应过程。 (3) 单体烃的催化裂化反应 ① 烷烃主要发生分解反应,生成较小分子的烷烃和烯烃。 ② 烯烃除发生分解反应外,还发生异构化、氢转移和芳构化等反应。 ③ 环烷烃可以发生开环反应生成链状烯烃,也可以发生氢转移反应生成芳香烃。 ④ 芳香烃不发生开环反应,只发生断侧链反应,且断裂的位置主要发生在侧链同芳香环连接的键上。 (4) 烃类催化裂化反应机理和产物分布规律 绝大多数学者认为烃类的催化裂化反应遵循碳正离子反应机理。按照碳正离子反应机理,烃类催化裂化的反应性能和产物分布规律如下: ① 裂化原料中,烯烃裂化的速度和芳香烃断侧链的速度都很快,而环烷烃和异构烷烃的反应速度较慢,正构烷烃的分解速度最慢。 ② 汽油中的烯烃含量很高,芳香烃含量也比较高,汽油的辛烷值较高。 ③ 柴油中烷烃含量较低,十六烷值较低。 ④ 裂化气体中C3和C4产物的含量很高,并且主要是丙烯和丁烯,在C4产物中,异构烃类的含量较高。 (5) 催化裂化的影响因素 催化裂化的影响因素主要包括原料油的性质、催化剂性质、操作条件以及反应装置。 ① 裂化原料油性质的影响。一般来说,原料油的H/C比越大,饱和分含量越高,则裂化得到的汽油和轻质油收率越高。原料的残炭值越大,硫、氮以及重金属含量越高,则汽油和轻质油收率越低,且产品质量越差。 ② 催化剂的性质。催化裂化催化剂分为硅酸铝催化剂和 分子筛催化剂 两种,催化剂的活性、选择性、稳定性、抗重金属污染性能、流化性能和抗磨损性能都对催化裂化有着不同程度的影响。一般来说,催化剂的活性越高,原料的转化率也越大;而催化剂的选择性越高,则轻质油品的收率也越高。分子筛催化剂的活性和选择性一般都优于硅酸铝催化剂,可提高汽油产率15~20%。 ③ 操作条件的影响。操作条件包括原料的雾化效果和气化效果、反应温度、反应压力、反应时间、剂油比、水蒸汽量和催化剂的停留时间等。原料的雾化效果和气化效果越好,原料油的转化率越高,轻质油品的收率也越高;反应温度越高,剂油比越大,则原料油转化率和汽油产率越高,但是焦炭的产率也变大;油气停留时间不能太短,也不宜过长,一般在2~4秒;催化剂停留时间越长,则意味着单位催化剂上发生的反应数越多,催化剂的平均活性下降,会导致原料油的转化率下降;而反应压力的影响相对较小。 ④ 目前炼油厂催化裂化装置普遍采用提升管作为反应装置,提升管的长短对裂化有一定的影响,提升管越长,则二次反应加剧,气体和焦炭产率较高。另外原料油雾化喷嘴和旋风分离器的性能也对裂化产品分布有着一定的影响。 催化裂解 催化裂解是在催化剂存在的条件下,对石油烃类进行高温裂解来生产乙烯、丙烯、丁烯等低碳烯烃,并同时兼产轻质芳烃的过程。由于催化剂的存在,催化裂解可以降低反应温度,增加低碳烯烃产率和轻质芳香烃产率,提高裂解产品分布的灵活性。 (1) 催化裂解的一般特点 ① 催化裂解是碳正离子反应机理和自由基反应机理共同作用的结果,其裂解气体产物中乙烯所占的比例要大于催化裂化气体产物中乙烯的比例。 ② 在一定程度上,催化裂解可以看作是高深度的催化裂化,其气体产率远大于催化裂化,液体产物中芳烃含量很高。 ③ 催化裂解的反应温度很高,分子量较大的气体产物会发生二次裂解反应,另外,低碳烯烃会发生氢转移反应生成烷烃,也会发生聚合反应或者芳构化反应生成汽柴油。 (2) 催化裂解的反应机理 一般来说,催化裂解过程既发生催化裂化反应,也发生热裂化反应,是碳正离子和自由基两种反应机理共同作用的结果,但是具体的裂解反应机理随催化剂的不同和裂解工艺的不同而有所差别。 在Ca-Al系列催化剂上的高温裂解过程中,自由基反应机理占主导地位;在酸性沸石分子筛裂解催化剂上的低温裂解过程中,碳正离子反应机理占主导地位;而在具有双酸性中心的沸石催化剂上的中温裂解过程中,碳正离子机理和自由基机理均发挥着重要的作用。 (3) 催化裂解的影响因素 同催化裂化类似,影响催化裂解的因素也主要包括以下四个方面:原料组成、催化剂性质、操作条件和反应装置。 ① 原料油性质的影响。一般来说,原料油的H/C比和特性因数K越大,饱和分含量越高,BMCI值越低,则裂化得到的低碳烯烃(乙烯、丙烯、丁烯等)产率越高;原料的残炭值越大,硫、氮以及重金属含量越高,则低碳烯烃产率越低。各族烃类作裂解原料时,低碳烯烃产率的大小次序一般是:烷烃>环烷烃>异构烷烃>芳香烃。 ② 催化剂的性质。催化裂解催化剂分为 金属氧化物 型裂解催化剂和沸石分子筛型裂解催化剂两种。催化剂是影响催化裂解工艺中产品分布的重要因素。裂解催化剂应具有高的活性和选择性,既要保证裂解过程中生成较多的低碳烯烃,又要使氢气和甲烷以及液体产物的收率尽可能低,同时还应具有高的稳定性和机械强度。对于沸石分子筛型裂解催化剂,分子筛的孔结构、酸性及晶粒大小是影响催化作用的三个最重要因素;而对于金属氧化物型裂解催化剂,催化剂的活性组分、载体和助剂是影响催化作用的最重要因素。 ③ 操作条件的影响。操作条件对催化裂解的影响与其对催化裂化的影响类似。原料的雾化效果和气化效果越好,原料油的转化率越高,低碳烯烃产率也越高;反应温度越高,剂油比越大,则原料油转化率和低碳烯烃产率越高,但是焦炭的产率也变大;由于催化裂解的反应温度较高,为防止过度的二次反应,因此油气停留时间不宜过长;而反应压力的影响相对较小。从理论上分析,催化裂解应尽量采用高温、短停留时间、大蒸汽量和大剂油比的操作方式,才能达到最大的低碳烯烃产率。 ④ 反应器是催化裂解产品分布的重要影响因素。反应器型式主要有固定床、移动床、流化床、提升管和下行输送床反应器等。针对CPP工艺,采用纯提升管反应器有利于多产乙烯,采用提升管加流化床反应器有利于多产丙烯。 (4) 催化裂解工艺介绍 烃类催化裂解的研究已有半个世纪的历史了,其研究范围包括轻烃、馏分油和重油,并开发出了多种裂解工艺,下面对其进行简要的介绍。 ① 催化裂解工艺(DCC工艺)。该工艺是由中国石化石油化工科学研究院开发的,以重质油为原料,使用固体酸择形分子筛催化剂,在较缓和的反应条件下进行裂解反应,生产低碳烯烃或异构烯烃和高辛烷值汽油的工艺技术。该工艺借鉴流化催化裂化技术,采用催化剂的流化、连续反应和再生技术,已经实现了工业化。 DCC工艺具有两种操作方式——DCC-Ⅰ和DCC-Ⅱ。DCC-Ⅰ选用较为苛刻的操作条件,在提升管加密相流化床反应器内进行反应,最大量生产以丙烯为主的气体烯烃;DCC-Ⅱ选用较缓和的操作条件,在提升管反应器内进行反应,最大量地生产丙烯、异丁烯和异戊烯等小分子烯烃,并同时兼产高辛烷值优质汽油。 ② 催化热裂解工艺(CPP工艺)。该工艺是中国石化石油化工科学研究院开发的制取乙烯和丙烯的专利技术,在传统的催化裂化技术的基础上,以蜡油、蜡油掺渣油或常压渣油等重油为原料,采用提升管反应器和专门研制的催化剂以及催化剂流化输送的连续反应-再生循环操作方式,在比蒸汽裂解缓和的操作条件下生产乙烯和丙烯。CPP工艺是在催化裂解DCC工艺的基础上开发的,其关键技术是通过对工艺和催化剂的进一步改进,使其目的产品由丙烯转变为乙烯和丙烯。 ③ 重油直接裂解制乙烯工艺(HCC工艺)。该工艺是由洛阳石化工程公司炼制研究所开发的,以重油直接裂解制乙烯并兼产丙烯、丁烯和轻芳烃的催化裂解工艺。它借鉴成熟的重油催化裂化工艺,采用流态化“反应-再生”技术,利用提升管反应器或下行式反应器来实现高温短接触的工艺要求。 ④ 其它催化裂解工艺。如催化-蒸汽热裂解工艺(反应温度一般都很高,在800℃左右)、THR工艺(日本东洋工程公司开发的重质油催化转化和催化裂解工艺)、快速裂解技术(Stone & Webster公司和Chevron公司联合开发的一套催化裂解制烯烃工艺)等。 ⑤ 石蜡基原料的裂解效果优于环烷基原料。因此,绝大多数催化裂解工艺都采用石蜡基的馏分油或者重油作为裂解原料。对于环烷基的原料,特别针对加拿大油砂沥青得到的馏分油和加氢馏分油,重质油国家重点实验室的申宝剑教授开发了专门的裂解催化剂,初步评价结果表明,乙烯和丙烯总产率接近30 wt%。 (5) 催化裂化与催化裂解的区别 从一定程度上,催化裂解是从催化裂化的基础上发展起来的,但是二者又有着明显的区别,如下: ① 目的不同。催化裂化以生产汽油、煤油和柴油等轻质油品为目的,而催化裂解旨在生产乙烯、丙烯、丁烯、丁二烯等基本化工原料。 ② 原料不同。催化裂化的原料一般是减压馏分油、焦化蜡油、常压渣油、以及减压馏分油掺减压渣油;而催化裂解的原料范围比较宽,可以是催化裂化的原料,还可以是石脑油、柴油以及C4、C5轻烃等。 ③ 催化剂不同。催化裂化的催化剂一般是沸石分子筛催化剂和硅酸铝催化剂,而催化裂解的催化剂一般是沸石分子筛催化剂和金属 氧化物催化剂 。 ④ 操作条件不同。与催化裂化相比,催化裂解的反应温度较高、剂油比较大、蒸汽用量较多、油气停留时间较短、二次反应较为严重。 ⑤ 反应机理不同。催化裂化的反应机理一般认为是碳正离子机理,而催化裂解的反应机理即包括碳正离子机理,又涉及自由基机理。查看更多4个回答 . 2人已关注