首页
温文尔雅
影响力0.00
经验值0.00
粉丝6
设备维修
热风循环网带焙烧炉!? 各位: 有没有用热风循环网带式焙烧炉(烧 催化剂 )的啊?影响其焙烧效果的因素有哪些? 查看更多 0个回答 . 5人已关注
单项接地问题? 今天看了下工厂供电,以前没有太留意个这个问题,关于中心点不接地系统,单项接地,另俩相对地电压变成线电压,中性点接地系统,单项接地,另俩相对地还是相电压,我想了半天也不是很明白,感觉大地就是零电位,单项接地,也不是变成零电位,怎么不接地系统,另俩相电压能升高,可能我哪里想不通,高人给个指点!查看更多 2个回答 . 5人已关注
疏水性配合剂对于生胶的作用 ? 橡胶隔振器混炼的基本理论 发布时间:2012-06-16 橡胶隔振器 混炼的基本理论 ②配合剂分散在 橡胶隔振器 橡胶中,当其每一颗粒完全被橡胶包围和湿润,方可获得最佳的混炼效果。因此,橡胶的流动性显然对混炼起着重要的作用。橡胶的黏度越低,对配合剂粒子湿润性就越好,混合也越容易。另一方面,配合剂细粒子都是成聚集体存在的,这些聚集体混入橡胶后还应被扯开才能达到分散目的。这就要求橡胶具有较高的黏度,在混炼过程中能产生较大的剪切力,扯开配合剂的聚集体使之分散。为满足这两种互相矛盾的要求,正确选择橡胶的可塑性和混炼温度非常重要。 ③ 橡胶隔振器 配合剂的表面性质影响橡胶对配合剂的湿润。亲水性配合剂如陶土、碳酸钙、碳酸镁、氧化锌、锌钡白、氧化镁、氧化钙和其他碱性无机物等,粒子表面分子特性与生胶不同,两者界面极性差较大,因此,与生胶作用的活性较小,不易被橡胶所湿润,在混炼中难以均匀分散,工艺性能较差。 疏水性配合剂 如炭黑等则相反,两者界面极性差较小,互相作用活性较大,易为橡胶湿润,工艺性能较好。 为获得良好的 橡胶隔振器 混炼效果,胶料中加入 表面活性剂 (如 硬脂酸 、高级醇、含氮化合物及某些树脂等),能湿润亲水性配合剂表面,增大对生胶的亲和性,利于配合剂的分散。有些配合剂在混炼前就进行表面活化处理,以改变其表面性质。如用硬脂酸或其他表面活性剂与粒状配合剂加工制得的活性陶土、 活化碳酸钙 等,能很好地被橡胶所湿润,在胶料中获得良好的分散,因而也提高了对橡胶的补强效果。 有句话我不明白“ 疏水性配合剂 如炭黑等则相反,两者界面极性差较小,互相作用活性较大, 易为橡胶湿润,工艺性能较好 。”?? 请明白的不吝赐教?(我理解字面意思应该是:疏水性配合剂对于生胶不易被湿润、不好炼的哦 *-* ),不胜感激。。。。。。 查看更多 1个回答 . 4人已关注
实在分析不出原因 求技术支持 在线等? 乙炔车间清净效果一直很差 送来的浓 次氯酸 钠的指标一直也控制不下来 有效氯在 10-11% 游离碱 0.6%左右 PH值 13-14 分析了原因 也只有浓次氯酸钠的原因 大家帮忙分析下 具体的现象是 配制新鲜次氯酸钠在0.085%进2#清净塔出来还有0.07% 1#清净塔出来也还有0.04%左右 水洗塔 出来的温度没有超标就在20度以下 就等于在塔里就没怎么反应,送来的浓次氯酸钠 也一直指标没变 大家说说是弄次氯酸钠的原因吗?还有其他的原因可能吗?谢谢!!!查看更多 11个回答 . 5人已关注
重氮化上氟? 麻烦各位大侠帮我看看这个胺基如何重氮化上氟吧,我已经做了好几个月没做出来了 ,谢谢各位了查看更多 19个回答 . 5人已关注
如何提高蜡油的 凝点? 还是 我们 这套常压炼原油装置,炉出口要求397,指标要求四线蜡油凝点40度,现在 总是 做着凝点低一点,请大家给支点招数。我 能考虑到的只有炉温,气提,侧线抽出量。请大家 集思广益,想想还有别的影响一素么?急盼,谢谢。查看更多 3个回答 . 1人已关注
纳米磁性材料的测量和表征? Ways to measure andcharacterize magnetic nanostructures Kannan M. Krishnan's research group, University of Washington, WA, USA The basic information about conventionalmeasurement and characterization techniques such as XRD, SEM and TEM is given first. Then characterization techniques for magnetic nanomaterials are discussed in detail, according to thegeneral classification of the magnetic fieldmeasurements and magnetization measurements. These include methods measuring themagnetic field strength, magnetization and techniques for imaging theconfiguration of magnetization. People’s desire to observe the natural world beyond the limitations ofour five senses has driven the development of many new tools. For example, wehave developed telescopes, microscopes, and cameras to help us to see thoseobjects which are too small, distant, or faint, or are moving too quickly orslowly to observe with the unaided eye. To measure and characterize magneticsystems is an interesting case in point, for here we are dealing with aphysical phenomenon that is detectable only by our sense of touch, with themagnetic force on strongly magnetized objects. Tosatisfy the fundamental curiosity and practical interest, people have beingstriving to develop a series of techniques and facilities to unravel the innermystery of magnetic structures, especially the new-born magnetic nanomaterials. Conventional techniquesto measure andcharacterize materials such as X-ray diffraction (XRD),scanning electron microscopy (SEM) and transmission electron microscopy (TEM)can be applied to obtain the general structure information of the magneticnanostructures. Firstly, XRD is a very important experimental technique that has long been usedto address all issues related to the crystal structure of solids, includinglattice constants and geometry, identification of unknown materials,orientation of single crystals, preferred orientation of polycrystals, defects,stresses, etc. In XRD, a collimated (the line of sight of an optical device isadjusted) beam of X-rays, with a wavelength typically ranging from 0.7 to 2 Å,is focused on a specimen and is diffracted by the crystalline phases in thespecimen according to Bragg’s law, which shows the relationship between thespacing d of atomic planes in the crystalline phase and the X-ray wavelengthλ. In addition, one can also estimate the size ofcrystallite in a powder sample applying its XRD pattern along with the ScherrerEquation, which describes the relationship between the size and othermeasurable parameters such as the half height widths of individual peaks andrelated diffraction angles.1 SEM, on the other hand,through emitting electrons to strike the sample surface and detecting thesecondary low-energy and backscattered electrons, is capable of providing highresolution images of a sample surface within nanometer-scale (1~100nm).Furthermore, even higher resolution down to atomic-scale image of samplestructure information can be generated by TEM, which employs a beam ofelectrons to focus on a specimen and records the passing through of electronintensity variation to produce a high contrast image on a fluorescent screen orlayer of photographic film. Specially for the magnetic properties, peoplehave developed many characterization methods, most of which can be roughly divided into twogroups: the magnetic field measurements and magnetization measurements. Tomeasure the magnetic field strength of certain nanostructures, one can make useof the changes in various properties of materials caused by the presence of amagnetic field. For example,magnetoresistance, the change in electrical resistance of a material, whensubjected to a magnetic field, can be applied to determine the field strengthaccording to the known variation pattern of resistance with field. The main advantage of this methodis that very small probes can be fabricated to measure the field to a point.Magnetoresistive probes are particularly useful for field measurements at lowtemperature. On the other hand, if the magnetostriction(another unique phenomenon which is the change in the shape ofspecimen when subjected to a magetic field) of a material as afunction of field is known, it can also be utilized to measure the field strength.Additionally, magnetic anisotropy and magnetic resonance are other usefulproperties available for field strength measuring, especially for magneticthin-films and particles. Moreover, one recently developed advancedtechnique for magnetic field measurement is SQUID, which means the superconducting quantum interference device. It basically utilizesthe relation between the magnetic field and the quantized flux in asuperconducting circuit containing a poor conducting weak link. SQUID turns outto be highly sensitive and capable to provide an ultimate resolution on theorder of 10-14 T for the reason that the weak link enables theflux trapped in the ring to change by discrete amounts and thereby very smallchanges in flux can be measured.2 To image the magneticstray field, theiron filling method, as refined by Bitter, offered the greatest spatialresolution for a long period. In that method, thesurface of a magnetic material is dusted with magnetic nanoparticles, and thesubsequent particle agglomeration in the stray magnetic fields at domain wallsreveal the magnetic features down to 100 nm. Subsequent to Bitter,the instrument most widely used now is the magnetic force microscope (MFM),which is a variant of the noncontact atomic force microscope (AFM). Byrecording the frequency and amplitude of the vibration change of aferromagnetic tip corresponding to the stray magnetic field gradient at thesample surface, MFM imaging can achieve a very high spatial resolution of lessthan 10 nm. However, due to the rather complicated interaction between themagnetic tip and sample surface, it is difficult to extract quantitativeinformation directly from MFM images at present. In fact, the highestresolution among current methods available to map the field distribution isprovided by techniques applying electron microscopy.3Lorentz microscopy, for example, which derives the contrast image from thedeflection of electrons due to the Lorentz force upon passing through themagnetic induction in the sample, can obtain a lateral resolution of betterthan 10 nm. Therepresentative applications include the study of the detailed magnetic elementsand patterned spin tunnel junction material.4 The primary method to measure a sample’s magnetization is to use the magneto-optic effects, whichinvolve rotation of the polarization angle of linearly polarized light. The two principal magneto-opticeffects are the Faraday effect, which occurs when light is transmitted througha transparent medium in the presence of a magneticfield along the direction of propagation of the light, and the Kerr effect,which occurs when light is reflected from a ferromagnetic medium. They providea good way to measure the magnetization of ferromagnetic or ferrimagneticmaterials through other variables like the thickness of the specimen and therotation angle. In physics, one most often prefers to know the actual configuration ofmagnetization within a sample. Numerous high-resolution magnetic imaging techniquesmeasure quantities proportional to the local sample magnetization. Theseconsist of interactions of electron, photon, or neutron beamswith the sample have been developed to imaging the magnetization. 3For instance, imaging techniques based on interaction of electron beams, electron microscopy series, areparticularly useful for investigation on ferromagnetic materials of surface andthin-film magnetism. One powerful method is the scanning electron microscopy with polarization analysis, or SEMPA, which can be regarded as a variant of the SEMdevice that the emitted secondary electrons were detected using aspin-polarization analyzer. It has several special merits over most othermagnetic imaging techniques: it is able to measure the magnitude and directionof the magnetization directly and it is sensitive only to the few outermostatomic layers of the sample due to the small inelastic mean free path of thesecondary electrons,5 which thus allows SEMPA a high resolution ofaround 40 nm. So far, SEMPA is proved to be particularly powerful ininvestigating fundamental problems like interlayer exchange coupling ofmagnetic multilayers. To conclude, conventional techniques to measure and characterizematerials such as XRD, SEM and TEM can be applied to obtain the generalstructural information of the magnetic nanostructures, while a number ofmethods can be used to investigate the magnetic properties concerned withmagnetic field, magnetization and the their possible configuration. Althoughexcellent resolutions within nanometer length scale or even higher have alreadybecome reality, analytic methods, along with many fundamental mechanisms ofmagnetic nanostructures, are still in strong demand for future research. References: 1 B. D. Cullity and S. R. Stock, Elements ofX-Ray Diffraction, 3rd edition, Prentice Hall, Upper Saddle River,NJ, 2001 2 D. Jiles, Introduction to Magnetism andMagnetic Materials , Chapman and Hall. 3 M.R. Freeman and B.C. Chol, Advances in Magnetic Microscopy, Science16 Nov. 2001, vol294 4 K. J. Kirk, J. N. Chapman, S. McVite, P. R.Aitchison, C. D. W. Wilkinson, Appl. Phys. Lett. 75, 3683 (1999) 5 D.L. Abraham, H.Hopster, Phys.Rev. Lett. 58, 1352(1987) 查看更多 0个回答 . 2人已关注
谁有木质活性炭的活化原理啊? 我想了解一下木质 活性炭 的活化原理:分别是以KOH、 氯化 锌、磷酸、钾盐等作 活化剂 时的不同原理!谢谢查看更多 2个回答 . 1人已关注
水环真空泵与干式真空泵比较? 1.真空稳定性能比较: 水环真空泵随着系统运行时间的增加,闭路冷却循环水中的有机溶剂含量逐步增加,造成闭路冷却循环水的表面蒸汽压增加(即相同条件下更加容易挥发),因此造成了 真空机组 的极限真空度及抽气速率降低,从而延长了产品干燥的时间及质量。 爪式真空干泵由于没有水及油的存在所以不会发生以上问题。 2.真空度比较: 爪式真空泵 极限真空压力最高可以≤5帕,水环泵极限真空压力最高≤2000帕,所以在一些工矿条件下爪式真空单独使用就可以代替常用的罗茨水环或 罗茨水喷射真空机组 ,降低设备运行成本、操作复杂程度及故障率。 3.设备耐腐蚀性能比较: 当系统中有酸性气体存在时,由于水环真空泵有水存在,酸性气体溶于水后形成酸液,酸液在水环泵叶轮的带动下,对泵有强烈的冲刷腐蚀。 爪式真空干泵没有水存在,酸性气体无法形成酸液,对设备没有腐蚀。 4.故障停车、停电对产品及系统的影响比较: 水环真空泵运行过程中发生故障停车及停电事故后,水环泵中的水会在大气压下向系统反流,造成产品污染及罗茨泵损害。 爪式干泵没有水存在,所以不会发生以上事故。 5.节能降耗效果比较: 水环真空泵是依靠叶轮对水离心做功,形成吸、拍气腔,从而达到抽气效果,所以在水环真空泵工作时主要功耗是叶轮对水离心产生的功耗,工作过程中功耗变化不大。 爪式真空泵接近极限真空时主要功耗是泵自身的自转消耗的功耗,所以更加节能。 6.污水排放比较: 水环泵有水存在,污水排放无法避免。 爪式干泵没有污水排放。 7.尾气吸收比较: 水环泵尾气中含有水环泵产生的水,无法回收纯净的尾气。 爪式干泵可以实现纯净尾气回收。 查看更多 2个回答 . 5人已关注
现在全国最大的煤制气项目是那家公司? 有没有前辈, 能给我说说,目前全国来说,最大的煤制气项目除了 中电投在伊犁的两个60亿Nm3 还有其它企业做的没! 大家怎么看待中电投在新疆伊犁的煤制气发展项目!查看更多 1个回答 . 1人已关注
关于MTBE反应器甲醇催化剂醇洗? 各位盖德: MTBE 反应器 催化剂 水洗完后醇洗的过程中,开外 循环泵 循环的时候,这个量大概控制多少呢?直接用外循环即可了吧,不用再接什么管子了吧?查看更多 3个回答 . 2人已关注
辅助燃烧室内的百叶窗是用来调节一二次风比例的吗?? 辅助燃烧室内的百叶窗是用来调节一二次风比例的吗???查看更多 2个回答 . 1人已关注
化工原理精馏单板效率? 在连续 精馏塔 中分离苯- 甲苯 混合物 。在全回流条件下,测的相邻两层塔板上的液相组成分别为0.41和0.28(摩尔分数),操作条件下苯-甲苯的平均相对挥发度为2.5,则相邻两层塔板中较下层者塔板的单板效率EMV为 A 0.610 B 0.550 C 0.650 D 0.450 答案为A但是我的计算结果和答案对不上,请大家把你们的计算过程写出来,感激不尽。查看更多 2个回答 . 1人已关注
种牙工伤报销? 上班时门牙磕掉一个,报工伤的话种牙的费用能不能报销,能报多少,报工伤还有啥好处没 查看更多 1个回答 . 5人已关注
复肥微量元素? 大家说说看生产复合肥一般都用哪一种微量元素作为添加的?查看更多 5个回答 . 4人已关注
求助:甲基硅油的沸点有多少? 甲基 硅油 的沸点有多少?查看更多 2个回答 . 5人已关注
电捕焦油器前的阀门漏煤气,需检修,如何加装盲板? 我厂电捕 焦油 器需要检修,但发现进出电捕焦油器前后阀门漏煤气,关不严阀门,该如何加装盲板?查看更多 6个回答 . 4人已关注
精馏大神求助? 现在需要将8%-10%氨水精馏回收, 不锈钢反应釜 可以改造成氨水精馏装置吗(外加个 冷凝器 收集装置)?需要额外再加个 精馏塔 吗? 设计2小时精馏一立方溶液的精馏塔怎么设计?有参考资料或者书籍介绍也可以 查看更多 3个回答 . 1人已关注
铜锰回收工艺? 谁有铜锰回收工艺及可行性方案?望大家指导,沟通交流一下! 查看更多 6个回答 . 4人已关注
液压支架技术这本书谁有? 液压支架技术这本书谁有 查看更多 0个回答 . 4人已关注
简介
职业:南京凯米科化工技术有限公司 - 设备维修
学校:聊城大学东昌学院 - 化生系
地区:辽宁省
个人简介:你可以从别人那里得来思想,你的思想方法,即熔铸思想的模子却必须是你自己的。查看更多
已连续签到天,累积获取个能量值
  • 第1天
  • 第2天
  • 第3天
  • 第4天
  • 第5天
  • 第6天
  • 第7天
 
这是一条消息提示
 
提醒
您好,您当前被封禁天,这天内您将不能登陆盖德问答,离解封时间还有
我已了解
提醒
提问需要5个能量值,您当前能量值为,请完成任务提升能量值
去查看任务