Membrane Technology and Applications(第二版)(书, ...? Membrane Technology and Applications Richard W.Baker Membrane Technology and Research, Inc. Menlo Park, California 内容简介: My introduction to membranes was as a graduate student in 1963. At that time membrane permeation was a sub-study of materials science. What is now called membrane technology did not exist, nor did any large industrial applications of membranes. Since then, sales of membranes and membrane equipment have increased more than 100-fold and several tens of millions of square meters of membrane are produced each year—a membrane industry has been created. This membrane industry is very fragmented. Industrial applications are divided into six main sub-groups: reverse osmosis; ultrafiltration; microfiltration; gas separation; pervaporation and electrodialysis. Medical applications are divided into three more: artificial kidneys; blood oxygenators; and controlled release pharmaceuticals. Few companies are involved in more than one sub-group of the industry. Because of these divisions it is difficult to obtain an overview of membrane science and technology; this book is an attempt to give such an overview. The book starts with a series of general chapters on membrane preparation, transport theory, and concentration polarization. Thereafter, each major membrane application is treated in a single 20-to-40-page chapter. In a book of this size it is impossible to describe every membrane process in detail, but the major processes are covered. However, medical applications have been short-changed somewhat and some applications—fuel cell and battery separators and membrane sensors, for example—are not covered at all. Each application chapter starts with a short historical background to acknowledge the developers of the technology. I am conscious that my views of what was important in the past differ from those of many of my academic colleagues. In this book I have given more credit than is usual to the engineers who actually made the processes work. Readers of the theoretical section (Chapter 2) and elsewhere in the book will see that membrane permeation is described using simple phenomenological equations, most commonly, Fick’s law. There is no mention of irreversiblethermodynamics. The irreversible thermodynamic approach to permeation was very fashionable when I began to work with membranes in the 1960s. This approach has the appearance of rigor but hides the physical reality of even simple processes behind a fog of tough equations. As a student and young researcher, I struggled with irreversible thermodynamics for more than 15 years before finally giving up in the 1970s. I have lived happily ever after. Finally, a few words on units. Because a great deal of modern membrane technology originated in the United States, the US engineering units—gallons, cubic feet, and pounds per square inch—are widely used in the membrane industry. Unlike the creators of the Pascal, I am not a worshipper of mindless uniformity. Metric units are used when appropriate, but US engineering units are used when they are the industry standard. 出版社: McGraw-Hill(2004) [ ]查看更多0个回答 . 1人已关注