首页
沉沦
影响力0.00
经验值0.10
粉丝13
工艺专业主任
请问哪有这方面的专家? 请问在华中地区最好是武汉的哪家高校或者是研究所对涂料的研究最强,如果有这方面的专家包括应用化学方面的是最好了,能告诉专家姓名的万分感谢。查看更多 4个回答 . 13人已关注
安捷伦1100液相压力过大? 我用的是安捷伦额1100系列 液相色谱 ,纯甲醇流速调到0.1ml/min,压力都有70多,甲醇反复冲,压力都降不下来。出现这种情况:1、用纯甲醇冲洗,压力稍微偏高,另换一根柱子,纯甲醇冲洗,压力依旧稍微偏高。2、 流动相 稍微增加一点水,压力暴涨,换根柱子,同样情况。3、打开 排气阀 ,压力降为0.请高手帮忙指点一下,非常感谢。查看更多 7个回答 . 11人已关注
USP<857>翻译? USP<857>翻译,采纳追加查看更多 1个回答 . 15人已关注
个人整理仿制药文献检索方法? 这些都是楼主实践中总结出来的 支持查看更多 8个回答 . 7人已关注
跪求进口药品注册标准JX20110027(注射用氟氧头孢钠)? 有没有朋友手上有进口药品注册标准JX20110027(注射用 氟氧头孢钠 ),求发善心发我一份,万分感谢查看更多 1个回答 . 20人已关注
中药临床批件申请? 我想知道中药临床批件申请的各项研究(如病理、毒理研究等)金额。查看更多 1个回答 . 17人已关注
莫利替尼是否已经上市? 请问在哪里查最新的药品上市情况啊 谁知道 木利替尼 (莫利替尼)是否已经在国外或者国内上市啊 急求 谢谢查看更多 5个回答 . 17人已关注
糖基化多肽,蛋白? 在真核动物细胞中有 20 多种蛋白质翻译后修饰过程, 常见的有泛素化、磷酸化、糖基化、脂基化、甲基化和乙酰化等。mRNA 被翻译成蛋白质后, 对蛋白质上个别氨基酸残基进行共价修饰的过程,即蛋白质翻译后修饰过程尤为重要,它使蛋白质的结构更为复杂,功能更为完善,调节更为精细,作用更为专一。 一、糖基化定义 糖基化是在酶的控制下,蛋白质或脂质附加上糖类的过程,发生于内质网。在糖基转移酶作用下将糖转移至蛋白质,和蛋白质上的氨基酸残基形成糖苷键。蛋白质经过糖基化作用,形成糖蛋白。糖基化是对蛋白的重要的修饰作用,有调节蛋白质功能作用。 二、分类 蛋白质糖基化可以按照氨基酸和糖的连接方式分为四类:O 位糖基化、N 位糖基化、C 位甘露糖化以及 GPI(glycophosphatidlyinositol)锚定连接。 1.N-糖基化(N-linked glycosylation) 是通过糖链的的还原端N-乙酰胺基葡萄糖(Glc-Nac)和肽链中某些Asn侧链酰胺基上的N原子相连,能接有糖链的Asn 必须处于Asn-X-Ser/Thr(X!=P)残基构成的基序中。糖为N- 乙酰葡糖胺 。 2.O-糖基化结构比N-糖基化简单,一般糖链比较短,但是种类比N-糖基化多。肽链中可以糖基化的主要是Ser和Thr,此外还有酪氨酸、羟赖氨酸和 羟脯氨酸 ,链接的位点是这些残基侧链上的羟基氧原子。连接的糖为半乳糖或N-乙酰半乳糖胺。 三、糖基化作用 1.糖基化影响治疗用蛋白的疗效 对于治疗用蛋白,糖基化还可影响蛋白药物在体内的半衰期和靶向性 2.糖基化与蛋白质的可溶性 研究表明,蛋白质表面的糖链可增加蛋白质的分子溶解性 3.糖基化与蛋白质的免疫原性 一方面,蛋白质表面的糖链可诱发特定的免疫反应,另一方面,糖链又可遮盖蛋白质表面的某些表位而降低其免疫原性 4.糖基化增加蛋白质的稳定性 糖基化可增加蛋白质对于各种变性条件(如变性剂、热等)的稳定性,防止蛋白的相互聚集。同时,蛋白表面的糖链还可覆盖蛋白质分子的某些蛋白酶降解位点,从而增加蛋白质对于蛋白酶的抗性 5.糖基化影响蛋白质分子的生物活性 改变蛋白质的糖基化还可以使蛋白分子产生新的生物学活性 N-糖基化修饰结构 O-糖基化修饰结构查看更多 1个回答 . 2人已关注
求助CO2-TPD表征? 刚开始做CO2-TPD,用的95%CO2/H2(试做),试做过程中遇见这样的问题,TPD信号设置为10ml/min,CO2的气速为5ml/min,样品为0.02g,出现的结果如下图,希望做这方面的朋友指导一下查看更多 4个回答 . 11人已关注
请高手指点怎么分析这个交流阻抗谱(重点是为什么高频区没有圆弧)? 图片以附件方式传上去了。请各位帮忙解释下为什么我的高频区没有圆弧。并且怎么用图上的信息计算电阻大小。非常感谢!!!交流阻抗图查看更多 6个回答 . 7人已关注
这属于哪一类腐蚀? 表面是裂纹,剖开内部是空的查看更多 14个回答 . 5人已关注
选矿药剂的紫外全波扫描? 图1为731(浓度100mg/L),图2为GYB(浓度400mg/L),图3为GYR(浓度30mg/L)。为什么图1,3没有最大吸收峰,图2峰型不好?731全波扫描.jpgGYB全波扫描.jpgGYR全波扫描.jpg查看更多 7个回答 . 18人已关注
看图辨识阀门? 请教一下各位大侠,这是一种什么阀门啊?具体工作原理是什么?如何使用?烦请告知!!查看更多 11个回答 . 8人已关注
聚合氯化铁与聚合硫酸铁的问题? 为什么 聚合硫酸铁 可以做成固体产品,而 聚合氯化铁 不能啊。查看更多 4个回答 . 3人已关注
大家认识这裹得啥嘛?干什么用? 查看更多 4个回答 . 8人已关注
关于53A辅助密封问题? 多级离心泵 密封方式23+53A 运转时突然 白油 罐压力掉了,(泵在运转时由于 过滤器 堵,导致泵突然抽空)介质进入白油罐。当53A密封压力突然下降 是否可以认为这道密封已经泄露了,正常情况下我需要先投用密封保证白油压力高压介质入口压力0.1-0,2MPa,投用密封后在灌泵。在先投用密封时白油压力应该不降低。 当重新注入白油后正常启动泵,白油压力不降泵正常运转。上述这种情况 53A的密封是否有问题查看更多 1个回答 . 20人已关注
压力容器损坏的原因? 一般 压力容器 ,只要是在正常压力设计范围内是没问题的,如果工作温度是200度,既使是压力比较低的情况我们用20度的冷水直接激冷设备很容易损坏,请教下大家,为什么会这样呢?查看更多 1个回答 . 9人已关注
蒸汽安全阀出口管道? 这个问题。 参见:https://wenku.baidu.com/view/12fd5653f01dc281e53af022.html这篇文章里面,蒸汽 安全阀 出口管道压力还有 0.3mpag。 这问题就来了。一般出口管道都按非压力管道啊。。。。 请知情者讲讲。查看更多 1个回答 . 8人已关注
2018 Wiley 新书:有机合成中溶剂作为试剂的反应及应用? 2018 Wiley 新书:有机合成中溶剂作为 试剂 的反应及应用 Solvents as Reagents in Organic Synthesis-Reactions and Applications Xiao-Feng Wu (Editor) ISBN: 978-3-527-34196-2 Jan 2018 552 pages E-BOOK=$172.99 HARDCOVER=$215.00 Description Written by highly renowned and experienced authors, this is the only reference on the application of solvents as reagents. Clearly structured, the text describes various methods for the activation and reaction of these small molecules, highlighting the synthetic opportunities as well as process-oriented advantages. To this end, all relevant types of solvents are covered separately and emphasized with numerous synthetic examples, while taking care to explain applications so as to avoid undesired side reactions. The result is a unique resource for every synthetic chemist and reaction engineer in industry and academia working on the methodical optimization of synthetic transformations About the Author Xiao-Feng Wu is Professor at Zhejiang Sci-Tech University (ZSTU) in China and also leads a research group at the Leibniz-Institute for Catalysis in Rostock (Germany). He studied chemistry at ZSTU, where he obtained his bachelor's degree in science in 2007. In the same year, he went to Université de Rennes 1 (France) to work with Prof. C. Darcel. He obtained his master's degree there in 2009 and then joined the group of Prof. M. Beller at the Leibniz-Institute for Catalysis in Rostock. He completed his PhD thesis in January 2012 and was promoted to Full Professor at ZSTU in 2013. His research interests include carbonylation reactions, heterocycles synthesis, and the catalytic application of cheap metals. He has already authored 5 books, 15 chapters and >120 publications in international journals. He also was a fellow of the Max-Buchner-Forschungsstiftung. Contents List of Contributors xiii 1 The Applications ofWater as Reagents in Organic Synthesis 1 Zhengkai Chen and Hongjun Ren 1.1 Introduction 1 1.2 Incorporation of Hydrogen Atom from theWater 2 1.2.1 1,2,3-Triazoles 4 1.3 Incorporation of Oxygen Atom from theWater 7 1.4 Incorporation of Hydroxyl Group fromWater 31 1.5 Traceless Promotion of the Reactions byWater 39 1.6 Conclusions 44 References 44 2 The Applications of Toluene and Xylenes 49 Krishna Nand Singh, Narendra R. Chaubey, and Neetu Singh 2.1 Application of Toluene and Xylenes as Reagents 50 2.2 Oxidation of Methyl Group into Common Functionalities 50 2.3 Application of Methyl Group as Acyl Building Block 51 2.3.1 Synthesis of Carbonyl Compounds 51 2.3.2 Synthesis of Amides 53 2.3.3 Synthesis of N-Aroyl Sulfoximines 54 2.3.4 Synthesis of Esters 55 2.3.5 Synthesis of Thioesters 56 2.4 Application as Alkyl Building Block 60 2.4.1 Synthesis of Nitriles 60 2.4.2 Synthesis of 2-Phenyl Acetic Acid Derivatives 61 2.4.3 Alkylation of Sulfonamides 62 2.4.4 Alkylation ofThiophenols 63 2.4.5 Synthesis of Trifluoromethyl Sulfides 64 2.4.6 Synthesis of Benzyl Esters 64 2.4.7 Synthesis of Phosphate Esters 66 2.4.8 Synthesis of Carbamates,Thioamides, and Esters 66 2.4.9 Synthesis of 3-Benzyl Coumarin Derivatives 66 2.4.10 Decarboxylative Benzylation of Cinnamic Acids 68 2.4.11 Synthesis of Functionalized Oxindoles 68 2.4.12 Synthesis of Dihydroquinolinones 69 2.4.13 Benzylation of Enones 69 2.4.14 Coupling with 1,3-Dicarbonyl Compounds 70 2.4.15 Benzylation of Pyridine-N-Oxide 70 2.4.16 Synthesis of Dihydrofurans 70 2.4.17 Synthesis of Quinoline Derivatives 71 2.4.18 Reaction with Ethyl Diazoacetate 72 2.4.19 Synthesis of Benzophosphole Oxides 72 2.4.20 Synthesis of β-Aromatic α-Amino Acid Derivatives 73 2.4.21 Halogenation Reactions 73 2.4.22 N-Benzylation of Isoquinolines 75 2.5 Application as Esters Building Block 76 2.6 Application as Alcohols Building Block 77 References 77 3 The Applications of 1,4-Dioxane, THF, and Ethers as Versatile Building Blocks in Organic Synthesis 81 Ping Liu, Guanghui Zhang, and Peipei Sun 3.1 Introduction 81 3.2 Cleavage of C(sp3)–H of Ethers 82 3.2.1 Cross-Dehydrogenative Coupling Reactions of Ethers 82 3.2.1.1 C–C Bond Formation 83 3.2.1.2 C–N Bond Formation 91 3.2.1.3 C–O Bond Formation 93 3.2.2 The Formation of C–S Bond 97 3.2.3 Addition of Ethers to C=C and C≡C Bonds 98 3.2.4 Decarboxylative Alkenylation or Alkylation Reactions 104 3.2.5 Radical Alkenylation and Alkynylation of Ethers 106 3.2.6 Radical α-C–H Hydroxyalkylation and Aminoalkylation of Ethers 107 3.2.7 Intermolecular Carbenoid Insertion to α-C–H Bond of Ethers 109 3.2.8 C(sp3)–H Arylation with Arylmetal or Arylboron Reagents 109 3.3 Cleavage of C–O of Ethers 112 3.4 Cleavage of C–C Bonds of Ethers 117 3.5 Conclusion 118 References 118 4 The Application of Dichloromethane and Chloroform as Reagents in Organic Synthesis 125 Anis Tlili and Johannes Schranck 4.1 The Application of Dichloromethane and Chloroform as Reagents in Organic Synthesis 125 4.1.1 Dichloromethane 125 4.1.1.1 Reactions of Dichloromethane with Posttransition Metals 126 4.1.1.2 Reactions of Dichloromethane with Transition Metals 127 4.1.1.3 Reactions of Dichloromethane with Phosphines 135 4.1.1.4 Reactions of Dichloromethane with Amines and Phosphines 136 4.1.1.5 Reactions of Dichloromethane with Amines 136 4.1.1.6 Reactions of Dichloromethane with Amines and Nucleophilic Carbon Derivatives 139 4.1.1.7 Reaction of Dichloromethane with Nucleophilic Sulfur 141 4.1.2 Chloroform 142 4.1.2.1 Reaction of Chloroform with Hydrogen Fluoride 142 4.1.2.2 Reactions of Chloroform with Post-TransitionMetals 142 4.1.2.3 Reactions of Chloroform with Transition Metals 143 4.1.2.4 Formation and Use of Dichlorocarbene 146 References 154 5 The Applications of Acetone and Ethyl Acetate 161 Jie-PingWan 5.1 Acetone 161 5.1.1 Aldol Reaction 161 5.1.2 Claisen–Schmidt Reaction 167 5.1.3 Mannich Reaction 170 5.1.4 Miscellaneous 175 5.2 Ethyl Acetate 182 5.2.1 Transesterification 183 5.2.2 Amidation 187 5.2.3 Miscellaneous 190 References 192 6 N,N-Dimethylformamide and N,N-Dimethylacetamide as Carbon, Hydrogen, Nitrogen, and/or Oxygen Sources 199 Jean Le Bras and JacquesMuzart 6.1 Introduction 199 6.2 Amination 200 6.2.1 Benzylic and (Hetero)aryl Halides 200 6.2.2 Benzyl and Allyl Acetates 205 6.2.3 Ketones and Aldehydes 206 6.2.4 Azoles 207 6.2.5 Others 208 6.3 Amidation andThioamidation 209 6.3.1 Using the DM DimethylamineMoiety 209 6.3.1.1 Aryl and Alkenyl Halides or Triflates 209 6.3.1.2 Acyl Halides 210 6.3.1.3 Carboxylic Acids, α-Ketoacids, Esters, Peresters, and Anhydrides 211 6.3.1.4 Primary Alcohols and Aldehydes 216 6.3.1.5 Methyl Ketones 217 6.3.1.6 Nitriles 218 6.3.1.7 Dibenzyldisulfanes 219 6.3.2 Using the DM DimethylcarbamoylMoiety 219 6.3.2.1 Aryl Halides 219 6.3.2.2 Ketones 221 6.3.2.3 β-Dicarbonyl Compounds 221 6.3.2.4 Phenols 221 6.3.2.5 Thiophenols 223 6.3.2.6 Alkenes 223 6.3.2.7 Alkynes 223 6.3.2.8 Amines 224 6.3.2.9 Amides 225 6.3.2.10 Nitriles 225 6.3.2.11 Isonitriles 226 6.3.2.12 Benzothiazoles 226 6.3.2.13 Selenides and Sulfides 226 6.3.2.14 Aryl-Tethered Activated Alkenes 227 6.3.3 Using the DM Formyl/Acetyl Moiety 227 6.3.4 Using the DMF Dimethylamino-CarbonMoiety 231 6.3.5 Using CH, CHCONMe2, CH2CONMe2, or H(Me)CONMeCH2 Moiety of DM 233 6.3.5.1 Alcohols 233 6.3.5.2 Aldehydes and Ketones 234 6.3.5.3 Carboxylic Acids and α-Ketoacids 235 6.3.5.4 Amines 235 6.3.5.5 Imides and Amides 236 6.3.5.6 Alkenes 237 6.3.5.7 Sulfides 237 6.3.5.8 (Hetero)arenes 238 6.3.5.9 Domino Reactions 240 6.4 Amidination 241 6.4.1 Sulfonamides 241 6.4.2 Enamines 242 6.5 Formylation and Related Domino Reactions 242 6.5.1 Vilsmeier-Mediated Formylations 243 6.5.1.1 (Hetero)arenes 243 6.5.1.2 Alkenes 245 6.5.1.3 O-Silylated Ethers 246 6.5.1.4 Alcohols and Phenols 246 6.5.1.5 Enamines 247 6.5.1.6 Activated Methyl Groups 247 6.5.2 Vilsmeier-Mediated Domino Reactions 247 6.5.2.1 Formylation and Cyclization 247 6.5.2.2 Haloformylation 249 6.5.2.3 Haloformylation and Cyclization 250 6.5.2.4 Ring Opening, Haloformylation, and Cyclization 252 6.5.2.5 Diformylation 253 6.5.2.6 Intramolecular Formylation-Intermediate Trapping 254 6.5.3 Using Organolithiens or Organomagnesiens 256 6.5.4 Hydroformylation 258 6.5.5 Formoxylation 259 6.6 Carbonylation 260 6.6.1 Carbonyl from DMF 260 6.6.2 Carbon from DM DimethylamineMoiety 262 6.7 Cyanation 264 6.7.1 Carbon from DMF Carbonyl 264 6.7.1.1 Vilsmeier Procedure 264 6.7.1.2 n-BuLi (or Mg)/I2/NH3 Procedure 265 6.7.2 Carbon from DM Dimethyl 266 6.7.2.1 Pd/Cu Procedure 266 6.7.2.2 Cu Procedure 267 6.7.3 Carbon and Nitrogen from DM Dimethyl 269 6.7.3.1 Pd Procedure 269 6.7.3.2 Cu Procedure 270 6.8 Insertion Reactions 271 6.8.1 Alkenes 271 6.8.2 Alkynes 272 6.8.3 Arynes 274 6.8.4 Imines 276 6.8.5 Carbenes 276 6.8.6 Nitriles 278 6.9 Miscellaneous Reactions 278 6.9.1 Cycloaddition 278 6.9.2 Methylenation 278 6.9.2.1 Of Benzylic Carbons 278 6.9.2.2 Of Aromatic Carbons 280 6.9.2.3 Of Enolic Carbons 282 6.9.3 Methylidynation 283 6.9.4 Acetylation 285 6.9.5 Ether Formation 285 6.9.6 Anhydride Formation 286 6.9.7 Substitution 286 6.9.8 Hydrogen Delivery 289 6.9.9 Acetalization of DMF 294 6.9.10 Thionation of DM 294 6.9.11 Hydrodeoxygenation of DMF 294 Acknowledgments 295 References 296 7 The Applications of DMSO 315 Jia-Chen Xiang, Qing-He Gao, and An-XinWu 7.1 A Brief Introduction of DMSO 315 7.2 Name Reactions 316 7.2.1 Swern Oxidation 316 7.2.2 Parikh–Doering Oxidation 316 7.2.3 Pfitzner–Moffatt Oxidation 317 7.2.4 Kornblum Oxidation 317 7.3 As Reaction Reagents 318 7.3.1 Providing –OH (Hydroxylation Reagent) 318 7.3.2 Providing –CO (Carbonylation Reagent) 320 7.3.3 Providing –SO2Me (Sulfonylation Reagent) 321 7.3.4 DMSO Serves as a Source of Sulfur 324 7.3.4.1 Providing –MeSMe Group 324 7.3.4.2 Providing –SMe Group 326 7.3.4.3 Providing –SOMe Group 331 7.3.5 As One-Carbon Synthon 332 7.3.5.1 Methylation Reagent 332 7.3.5.2 Formylation Reagent 332 7.3.5.3 Cyanation Reagent 335 7.3.5.4 One-Carbon Unit to Participate in the Ring or Bridge Formation 336 7.3.6 Dimsyl Anion Activation Reagent 339 7.4 As Multifunctional Catalyst/Reagent in Self-Sorting Reaction System 342 7.5 Summary and Perspectives 349 Acknowledgments 349 References 349 8 Acetonitrile as Reagents in Organic Synthesis: Reactions and Applications 355 Shun-YiWang, Xue-Qiang Chu, Yi Fang, and Shun-Jun Ji 8.1 Introduction 355 8.2 Transition-Metal-Catalyzed Cross-Coupling of Acetonitrile and Nitriles 355 8.3 Free-Radical-Initiated C–H Functionalization of Acetonitrile and Nitriles 366 8.4 Summary and Outlook 374 Acknowledgments 374 References 374 9 The Applications of Nitromethane as Reagent and Solvent in Organic Synthesis 377 Xinxin Qi, Jin-Bao Peng, and Xiao-FengWu 9.1 Introduction 377 9.2 Reactions with Aldehydes 377 9.3 Reactions with Imines 385 9.4 Reactions with Ketones 387 9.5 Michael Reaction 388 9.6 Other Reactions 391 References 395 10 Alcohol as a Reagent in Homogeneous Catalysis 403 Feng Han,Wei Sun, Chungu Xia, and Chao Liu 10.1 Introduction 403 10.2 Alcohol as O-nucleophile 403 10.2.1 Esterification Reaction 403 10.2.2 Oxa-Michael Addition 411 10.2.3 Etherification of Alcohol 414 10.2.3.1 Etherification of Alcohol with Halide 414 10.2.3.2 Etherification of Alcohol with C–H 418 10.3 Alcohol Oxidation or α-C–H Functionalization (Alcohol as C-nucleophile) 421 10.3.1 Oxidation 421 10.3.2 α-C–H Functionalization 422 10.4 Alcohol as Electrophile 424 10.4.1 Amination (Amine as Nucleophilic Reagent) 424 10.4.2 Alkylation Reaction with Alcohol (Alcohol as Electrophiles) 426 10.4.2.1 Alcohol and Alkene 426 10.4.2.2 Alcohol and Alkyne 428 10.4.2.3 Alcohol and Indole 430 10.4.2.4 Alcohol with Other Aromatic Systems 432 10.4.3 Ritter Reaction of Alcohol and Nitrile 435 10.4.3.1 Brønsted Acid Catalyst 435 10.4.3.2 Lewis Acid and Metal Catalysis 436 10.5 Conclusion 436 References 437 11 Synchronous Application of Hydrocarbons as Solvents and Reagents in Transition-Metal Catalysis 449 Jian Cao and Li-Wen Xu 11.1 Introduction 449 11.2 Aromatic Hydrocarbons 449 11.2.1 C–C Bond Formation 449 11.2.1.1 Arene–Arene Coupling 449 11.2.1.2 Arene–Alkene Coupling 458 11.2.1.3 Arene–Alkyne Coupling 468 11.2.1.4 Arene–Haloarenes Coupling 471 11.2.1.5 Arene–Arylboronic Acid Coupling 476 11.2.1.6 Arene–CO–Alcohol/Amine Coupling 477 11.2.2 C–N Bond Formation 478 11.2.3 C–O Bond Formation 482 11.2.4 C–B Bond Formation 484 11.2.5 C–Si Bond Formation 487 11.3 Aliphatic Hydrocarbons 491 11.3.1 C–C Bond Formation 491 11.3.1.1 Alkane–Arene Coupling 491 11.3.1.2 Alkane–Alkene Coupling 493 11.3.1.3 Alkane-Alkyne Coupling 497 11.3.1.4 Alkane–Ketone Coupling 497 11.3.1.5 Alkane–Aldehyde Coupling 498 11.3.1.6 Alkane–Isocyanide Coupling 499 11.3.1.7 Alkane–CO–Amine Coupling 499 11.3.1.8 Alkane–Carbene Coupling 500 11.3.2 C–N Bond Formation 502 11.3.3 C–O Bond Formation 504 11.3.4 C–S Bond Formation 504 11.3.5 C–B Bond Formation 506 11.4 Conclusions 507 Acknowledgments 507 References 508 Index 515 352734196X.jpg查看更多 1个回答 . 4人已关注
安全阀运行过程中起跳后需不需要重新校验? 最近新来了个大领导原来是干设备出身但10多年前转岗干工艺了,有一次开会说到一个 安全阀 起跳的事故,他突然问了一句这个安全阀起跳后有没有重新定压啊?本人干 石油化工 设备也有10多年了,最新涉及的安全阀的规范里也没有提到过安全阀起跳后需要重新定压的(包括2006版《安全阀安全技术监察规程》、《压力管道安全技术监察规程-工业管道(TSG D0001-2009)》、《TSG 21-2016 固定式 压力容器 安全技术监察规程》),不过我隐约记得刚刚参加设备工作的时候大家普遍是有这个说法的,但既然大家都这么说肯定有其文件来源,但当时我人也傻傻的没有追溯这种说法的来源。因此请教各位盖德有无知道这种说法来源的文件?查看更多 1个回答 . 14人已关注
简介
职业:上海燕达建设有限公司 - 工艺专业主任
学校:山东胜利职业学院 - 机电一体化
地区:河北省
个人简介:只要让我创造一个国家的迷信,我就不管归谁给他制定法律,也不管归谁给它编歌曲了。查看更多
已连续签到天,累积获取个能量值
  • 第1天
  • 第2天
  • 第3天
  • 第4天
  • 第5天
  • 第6天
  • 第7天
 
这是一条消息提示
 
提醒
您好,您当前被封禁天,这天内您将不能登陆盖德问答,离解封时间还有
我已了解
提醒
提问需要5个能量值,您当前能量值为,请完成任务提升能量值
去查看任务